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We observe that the N-state integrable chiral Potts model can be considered as 
a part of some new algebraic structure related to the six-vertex model. As a 
result, we obtain a functional equation which is supposed to determine all the 
eigenvalues of the chiraI Pons model transfer matrix. 
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1. I N T R O D U C T I O N  

The star- tr iangle (or Yang-Baxter )  relation and its generalization play a 
central role in the theory of exactly solvable models in statistical 
mechanics (~'2) and field theory. (3) M a n y  solutions of the Yang-Baxter  
equat ions have been found. Usually they are uniformized in terms of 
elementary functions or  Jacobi elliptic functions of fixed modulus,  where 
the a rgument  is the difference of the "rapidities" of the two lines through 
that  vertex. 

Recently, solutions of the star-tr iangle equations have been found (4 6) 
that were shown not  to be of  this form. In  fact, they should be uniformized 
by genus g > 1 curves and hence cannot  have the difference property.  The 
general solution of this type has been found in ref. 7 for the N-state chiral 
Potts  models. Note  that some of  the Hamil tonians  associated with these 
models were studied early in refs. 8-10. 

In the present paper  we show that, in spite of all its unusual 
properties, the chiral Potts  model has a very close relation to the 
"convent ional"  integrable models. In fact, we show that the integrable 
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chiral Potts model can be considered as part  of a new algebraic structure 
related to the six-vertex model. (H'12/Note that an explicit manifestation of 
such a connection for the spectrum of the superintegrable 3-state chiral 
Potts model was observed in refs. 13 and 14. 

We find some new 2 by N L-operators as solutions of the Yang-Baxter 
equation with the six-vertex model R-matrix. These L-operators satisfy 
another Yang-Baxter  equation with an N-state R-matrix. We show that 
this R-matrix is precisely that of the N-state chiral Potts model. 

The organization of this paper is as follows. The L-operators which 
are interwounded by the six-vertex R-matrix are obtained in Section 2. 
Section 3 contains basic definitions of the chiral Potts model. In Section 4 
we establish a relationship between six-vertex and chiral Potts models. In 
Section 5 we derive various functional relations for the transfer matrix of 
the chiral Potts model. We suppose that these relations should determine 
all the eigenvalues of this transfer matrix. For the N =  3 case our relations 
imply the one presented in ref. 15. 

Baxter observed various interconnections of our results with his recent 
results on superintegrable chiral Potts model. (16-18) These connections are 
discussed in detail in ref. 19 (see also the end of Section 4 of the present 
paper). 

2. L - O P E R A T O R S  RELATED TO THE S I X - V E R T E X  M O D E L  
R - M A T R I X  

In this section we consider some solutions of the Yang-Baxter  
equations (YBE) related to the six-vertex model R-matrix. The latter is a 
four-index matrix function R H2 i, i2 (x) (the indices run over the two values 0 
and 1) with the following nonvanishing matrix elements: 

ROO_ p l l  sin(0 + q), ol lo 
O0 - -  * ' 1 1  = P Rol = Rio = p sin 0 

-io (2.1) 1 0  Rol - p sin r/e '~ R~ = p sin ~/e 

where 0 = - i l o g  x is a variable, while p, ~/ are considered as constants. 
R(x) satisfies the YBE 

J3Jl R k 3 j 2  k l  k2 1 __ R J l J 2  - 1  j 3 k  2 k3k l  R~,s2 (yx ) R,3J2 (y) Rj, sl (x) R,,il(x) J,~2(Y) - , , , 2 ( Y X  ) (2.2) 

where summation over repeated indices is assumed (see Fig. 1). 
Let L(x) be an operator in C2|  C N, N>>.2, satisfying the following 

equation (shown in Fig. 2): 

Lj,/~(x } L i2.et,,~ k,~2 x - i ) _  Rj~J2(vx 1) L~2~(v~ Lk, Tt~.~ (2.3) 
i l :~ .  . i 2 f l % J )  R ini 2 ( J  , - -  i l i  2 x J  " j2~  \~" *" j l f l  \ ~ !  
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Fig. 1. Graphical representation of the Yang-Baxter equation (2.2). 

where i~(~ (i, j =  0, 1; a, fi = 0, 1,..., N -  1) denote the matrix elements of 
L(x). The operator L(x) is called a quantum L-operator related to a given 
R-matrix. It can conveniently be viewed as a two by two matrix with 
operator matrix elements acting in cN�9 Then, one can rewrite (2.3) as 

[ L ( x ) | 1 7 4  (2.3') 

where 
R(x)  = R(x )P  (2.4) 

P is a permutation operator in C 2 | C 2, P(x | y) = (y | x). 
Discarding an interesting question about the most general solution of 

(2.3), let us search for an L-operator of the form 

L ( x ) = x L +  + x 1L_ (2.5) 

where L+ ( L )  is independent of x and has an upper (lower) triangular 
form. The most obvious nontrivial solution of this form for N =  2 is the 
R-matrix itself. From (2.1), (2.4) it follows that 

P (xR + + x - I R  ) (2.6) R(x) =~ 

Y 

kl ~ Y  " Jl = y x  LJ. 1~ (x) = 

~ J2 

i I k7 

Fig. 2. Graphical representation of the Yang-Baxter equation (2.3). 
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where the R e are independent  of x. Introducing/~_+ = R e P as in (2.4), we 
have 

k+k_ = 1  
(2.7) 

/~+ + / ~  = 2  sin r/1 

By using (2.5)-(2.7), we find that  Eq. (2 .3)  reduces to only three 
independent  relations, 

Explicitly, we have 

(L_+_ |  = R + ( L +  |  

(L | 1 7 4  
(2.8) 

[(Lr (Lr = 0, or, rr' = _ ,  i, j = 0, 1 

(Lo)i , (L+)ol  =O)l~162 ~= +, i=O, 1 

(Lr 0 "= __, i = 0 ,  1 

[ (L+)o l  , ( L ) 1 o ]  = ( ( D 1 - o g / ' ) { ( L - ) H ( L + ) o o - ( L + ) n ( L - ) o o }  

(2.8') 

where e ( 0 ) = l ,  e ( 1 ) = - 1 ,  and ~ol=exp(# / ) .  These relations can be 
considered as a definition of some quadrat ic  H o p f  a lgebra  (2~ with six 
generat ing elements (L,)ii ,  i = 0 ,  1, a =  _+, and (L+)o~, (L_)10,  which 
generalizes the Uu(sl(2)) algebra. (22) The  latter arises if we set, e.g., 

(Lo)oo = (L ~)11 , (7 = +_ (2.9) 

We are interested in representat ions of  the algebra (2.8) which, in general, 
do not  ma tch  the above constraints.  Moreover ,  let us require that  

detcu(L~)u#O (2.10) 

for all values of o% i, j. F r o m  the relations (2.8) it follows that  this p roper ty  
can be achieved only if o N  = 1, i.e., 

= 2rck/n, k = 0, 1 ..... N -  1 

Here  we restrict ourselves to the case when 

(2.11) 

N = prime number  (2.11') 

Then one can show that  the mos t  general  2 solution of (2.8), (2.10), and 
(2.11) can be writ ten as 

2 When N is not prime, Eqs. (2.12) and (2.13) still give a solutions of (2.8) and (2.10), but 
apparently not the most general one. 
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D+ = (L+ )oo=d+ A 

D = ( L  )oo=d B 

F+ = (L+)11 = f +  B 

F =(L )11=f A 

G =  ( L + ) o l  = ( g +  B +  g _ A ) C  

H = ( L _ ) ~ o = ( h + B + h _ A )  C 1 

(2.12) 

where A, B, and C are N by N matrices satisfying the relations 

[A, B] =0;  CA =~IAC;  CB=og~JBC (2.13) 

The eight parameters d+,  d , f + ,  f _ ,  g+ ,  g , h+,  and h are arbitrary 
modulo the constraints 

g h = f  d+, g + h + = f + d  (2.14) 

So we can choose a set of six parameters 

z = { d + , d  , f + , f _ , g + , g  } (2.15) 

as the independent ones. 
Thus, Eqs. (2.5) and (2.12) (2.14) define a six-parameter solution of 

the YBE (2.3) for the case (2.11). A particular choice of the matrices A, B, 
and C in (2.12) convenient for subsequent calculations is 

A = X  p, B = X  -p, C = Z  (2.16) 

where p = ( N -  1)/2 and X and Z are N by N matrices, 

(2.17) 
ZX = ~oXZ 

1, a = f l  (modN)  
6 ~ =  0, ~ # f l  (modN)  (2.18) 

where ~o = ~o 12 and a, fl = 0,..., N -  1. 
Let us discuss some properties of the transfer matrices associated with 

L(x) given by (2.5) and (2.12)-(2.14). For the lattice of M by M '  sites the 
column-to-column and row-to-row transfer matrices have the form (see 
Figs. 3 and 4, respectively) 

M' 
Tco,=Y(x,  ~'~1''4N= ~ 1~ (LJk~k ) (2.19) J~ ' t l , . . . , l  N ~ ikCtk+ll 

{~} k= 1 
M 

Tro w = T(x, •)fll.....flu = 2 U (Lik+l[3k) (2.20) 
gtl ,..., O~N x ik C~k Y 

~i} k= I 
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jU-!I  ..... aM' 
11 ,..., i M, 

n m 

Q M~-I = % 

I! 
II 
[I 
!1 
II 
II 
I! 

i2 ~ J2 

11 31 

Q1 

Fig. 3. Graphical representation of the column-to-column transfer matrix (2.19). 

The first one acts in (C 2 | while the second one acts in ( C  N @ ) M .  

In addition, we introduce a six-vertex model transfer matrix acting in 
( C  2 @ ) M '  

m '  
T (x  ]jl'''''jN= ~ I~  ~jsks+l(Y] ( 2 . 2 1 )  

6v\ ]il ,..., iN *'isks t~!  
{~} ~ = 1 

with R given by (2.1). It follows from (2.3) that 

[y - (x ,  z), r6v(y) ]  = 0 (2.22) 

It is well known that T6v commutes with an arrow number operator ~ ,  

N 

[T6v, J V ] = 0 ,  ~Ar= ~ l @ . . - | 1 7 4  (2.23) 
k=  1 kth 

Contrary to this, the transfer matrix ~--(x, )~) does not commute with Y .  
This intriguing phenomenon is possibly due to the degeneracy of the 
spectrum of T6v among sectors with values of Y differing by multiples of 

[31 ~2 ~M 

T a, .... o~ i IT iM~=i~ 

a l  a 2 a M 

Fig. 4. Graphical representation of the row-to-row transfer matrix (2.20). 



Chiral Potts Model 805 

N. Thus, Eq. (2.22) implies the existence of a family of new arrow- 
nonpreserving integrals, commuting with the 6v-model transfer matrix (as 
we shall see in Section 4, these integrals, in general, do not commute 
among themselves). 

Another interesting feature of J-(x,  )() is that it possesses the proper- 
ties of Baxter's Q-matrix [Eq. (10.5.32) of ref. 2] for the 6v model. Namely, 
one can show that 

T6v(0 ) J ( 0 )  = sin N 0J-(0 9- q) + sinN(0 + q) J-(0 -- q) 

3-(0) = Y ( e  '~ z(O)) 

z( O ) = { a, b, ce ~o, deiO, 2b, 2a} 

where 0 = - i l o g  x and a, b, c, d, and 2 are arbitrary parameters. 
The properties of T(x, )~) are interesting as well. In particular, we shall 

show in Section4 that it commutes with the transfer matrix of the 
integrable checkerboard N-state chiral Potts model. 

3. C H I R A L  POTTS M O D E L  

Following ref. 7, let us recall the basic definitions of the checkerboard 
integrable chiral Potts model. Consider an oriented square lattice 5 ~ and 
its dual • '  (shown in Fig. 5 by solid and dashed lines, respectively). 

The vertical lines of 5O' carry rapidity variables q, q' in alternating 
order. Each rapidity variable q is represented by a 4-vector (aq, bq, cq, dq) 
restricted to lie on a curve. Similarly, the horizontal lines carry the rapidity 
variables p, p'. Place spin variables ~r = 0,..., n -  1 on sites of the original 
lattice 5O. Then there are two kinds of neighboring spin pairs, as indicated 
in Fig. 6, with states a and b, and Boltzmann weights W p q ( a - b )  and 
W p q ( a - b )  on the edges of ~ .  Here the arrow from a to b indicates that 

u 1-- 

~q Xq, 

Fig. 5. Part of the lattice for the formulation of the checkerboard chiral Potts model The 
open arrows show the directions of the rapidities. 
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i q b 

1 

' ~ % q ( a  -- b) W p q  (a  - b) 

Fig. 6. The two types of Boltzmann weights. 

the arguments is a -  b (mod N), rather than b - a. This arrow corresponds 
to the chirality of the model. 

We can write down the star-triangle equation both graphically, as in 
Fig. 7, and algebraically, i.e., 

N 

e = l  
l~qp(a-e) Wrp(C-e) [ig'rq(e-b)=R,.qpWrq(C-a) ff'rp(a-c) Wqp(c--b) 

(3.1) 

where Rrp q is independent of the spins. The solution of (3.1) found in ref. 7 
has the form 

VIZpq(k)- f i  dpbq=apCqfD.------~J 
Wpq(O) j= l bpdq - Cpaq(l) j 

7r ~I Coapdq-dpaqCOJ 
gl/'pq(O) j = l  cpbq-- bpCqO) j 

(3.2) 

(3.3) 

r O 

�9 I j /  
1" 

- -  R . . _ r  -b  

q . .  

/ / I  I 

p 
! 

P 

Fig. 7. Graphical representation of the s ta~tr iangle  relation (3.1). 
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where 

Each rapidity 4-vector 

co = exp( 27ri/N) (3.4) 

Xp ~--- (ap, bp, Cp, dp) 

associated with a line p is restricted to satisfy the following relations: 

N ~ N N ap + k bp =kdp (3.5a) 

k 'a~ + b N = kc~ (3.5b) 

ka x + - ,  N " N  ~c Cp = ap (3.5c) 

kbNp + "'~NK ap : C  pN (3.5d) 

where k ' 2 =  1 - k  z. Note that each pair of (3.5) implies the other two. The 
constant k is a parameter of the model. In the particular self-dual case 
k = 0  the model is reduced to the Fateev-Zamolodchikov model (23~ (ZN 
model). The latter model is critical. 

Let al,..., aM and o-' 1 ..... a ~  be the spins of two adjacent N-site rows of 
5f. Then, for cylindrical boundary conditions, one can define two transfer 
matrices, 

N 

(Up, q,q')aa'~- ~I ~Zpq((Ti--ff;) mpq ' (a; -a i+l )  ( 3 . 6 a )  

i = 1  

N 

(~fp, q,q')aa '= I~ ~Tpq'(ffi--ff'i+l) Wpq((~;--ai) (3.68) 
i=l 

Clearly, 

~f p, q,q, ~- Up, q,,q/3 

where /3 shifts the spins one site 

i = l  

(3.7) 

(3.8) 

For the homogeneous case when q ' =  q the transfer matrices Up, q,q, ~fp,.q,q 
with the same value of q but with different values of p commute among 
each other and with the operator P 

[ f  pq, ~fp,q] = [gpq, e ]  = E~fpq, P] =0  (3.9) 

This is the consequence of star-triangle relation (3.1). 

822/59/3-4-18 
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4. C H I R A L  P O T T S  M O D E L  AS A D E S C E N D A N T  OF T H E  
S I X - V E R T E X  M O D E L  

As was noted in Section 2, the transfer matrix (2.19) commutes with 
the 6-vertex model transfer matrix (2.21). Nevertheless two different 
transfer matrices (2.9) do not necessarily commute among themselves, 
because of the degeneracy of the spectrum of the 6-vertex model. 

Let L and s be two L-operators of the form (2.5), (2.12) with different 
sets of parameters •, ~, (2.15). It is convenient so set x = 1 in (2.5) because 
it can be absorbed into the other parameters. Then we have 

where D = D+ + D_ ,  F =  F+ + F _ ,  the other notations being defined by 
(2.12). 

Clearly, the transfer matrices corresponding to L and L will commute 
if there exists an intertwining matrix S satisfying the equation 

1 n - - I  1 n 1 

2 Li2~2Li3#2v~3~3-~ 2 q~z'62Liz'83Li3~3 (4.2) 
i l c q  i2fll ~ 2 f l 2  - -  ~" Ctl ]~1 ilfl2 i2c~2 

i 2 = 0 ~2 , /~2  ~ 0 i 2 = 0 ~2 , /~2  = 0 

or, using a matrix notation, 

(L~ |  S =  " - j  k S(L, | Lj ) (4.3) 

where (L j |  L)) now denotes a matrix product in C 2 and a direct product 
in c N |  C u (the summation over repeated indices is assumed). 

The last equation implies (in the case that S exists) that any of the 

~3 a3 ~3 ct3 

il ~ i2 ~ i  3 

~ Pl ~ 131 

Fig. 8. Graphical representation of the Yang-Baxter equation (4.2). 
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four pairs of matrices (L,J.| and (L{|  for i, k = 0 ,  1, should have 
the same spectra. Requiring this, one can show that the three quantities 

(d N _ fN+ )(du _ f N  ), d u _ f N  
F1 (hN+hN)(g+ g_)  dN--fN+ = ~ + _~-  F2 - ( 4 . 4 )  

hN+ w h N 
/73 ~- _N g~,~, (4.5)  

g + +  

should be the same for L and L. 
At this stage it is convenient to introduce a parametrization for the 

coefficients in (2.2). Obviously, the matrix S in (4.3) is unaffected by a 
simultaneous similarity transformation of L and L considered as matrices 
in  C 2, 

LJ ~ l 1 - j  ~ t  AigLk(A )~j, Li--,A~kLk(A )~ (4.6) 

If we choose A = diag(21/2, )-1/2), then (4.6) results only in a rescaling of 
the parameters g+ ,  g_ ,  h+,  h in (2.12). The values of /"1 , /"2  remain 
unchanged, while F 3 rescales as 

/"3 -'+ 1"3 2 --2N (4.7) 

NOW, choose the modulus k and three points p, q, q' on the curve (3.5) 
such that 

aNn N 
F I  = k2, F2 -- ~N/7 ON (4.8) 

ap Cp 

Then, using the transformation (4.6), (4.7) one can adjust/"3 so that 

N N 
F3 = __ af CP (4.9) N N dp bp 

Note that in this gauge we have the relation 

det F -  det D + det H -  det G = 0 (4.10) 

where D, F, G, and H are defined by (4.1). The coefficients in (2.12) can 
be parametrized as 

d+ = -plcpdpbqbq,, 

d_ =~plapbpdqdq,, 

f+ = - - o ) p l c p d p a q a q ,  , 

f _  = (.Opl apbpcqgq,, 

h + = copl apcpdqaq, 
h_ = - - f o p l a p c p b q c  q, 

g+ = -coplbpdpaqd q, 

g_ = plbpdpcqbq, 

(4.11) 
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where co = (.Ol 2. Equations (4.11) contain five independent parameters P l, 
k, p, q, q' instead of the six in (2.15). One parameter was absorbed by the 
gauge transformation (4.6), (4.7). Note that the transfer matrix (2.20) does 
not depend on this gauge degree of freedom. In particular, applying the 
transformation (4.6) with 2 = cp/bp to the coefficients (4.11), one can show 
that the transfer matrix (2.20) can be written as 

T(21(p; q, q') = T(1, )~) = (cpdpcqCq,) M P(tp) (4.12) 

where P(tp) is an Mth-degree polynomial in the variable 

tp = ap bp/cp dp 

Let us turn to the calculation of S in (4.3). Parametrize the coefficients 
of L by the same formulas (4.11) with q, q' replaced by r, r', respectively. 
Solving now the linear system (4.2) for the elements S, we obtain the 
following unexpected result: 

S~(q, q', r, r ')= Wqr,(O~ , ~?) Vg'q,r,((X , ~) Wq, r(~, ~) mq,,r(J~, ~) ( 4 . 1 3 )  

where W and fir are the Boltzmann weight of the chiral Potts defined by 
(3.2), (3.3). Note that the matrix (4.13) was used (v) for the vertex 
formulation (i.e., with spins placed on the edges of the lattice) of the 
checkerboard chiral Potts model. Using the star-triangle relation (3.1), one 
can show that it satisfies the Yang-Baxter equation. (7) 

Recall now how we came to the chiral Potts model. We started from 
the six-vertex model R-matrix (2.1) satisfying the YBE (2.2). Then we 
solved another more general YBE (2.3) [with the Ansatz (2.5), (2.10), 
(2.11 )], which includes this R-matrix as an "input." As a result we obtained 
the L-operators (2.12). Finally, the R-matrix S, (4.13), was found as a 
solution of the third YBE (4.2), which in turn includes as an input these 
L-operators. Thus, the chiral Potts model appeared here as the result of 
some unambiguous procedure, which exhibits some new algebraic structure 
related to the six-vertex model. 

Before ending this section, we make two remarks about the structure 
of the L-operator (4.1), (2.12). Baxter observed that our T(2)(p;q,q ') 
coincides with Too ~ in his recent paper (18) on the superintegrable chiral 
Potts model [Eqs. (8.7), (8.13) of ref. 18]. In fact, using (2.12), (4.1), and 
(4.11), one can easily rewrite the matrix elements of L as 

LiJ~ = f~(~-/~) hj(~ - /~)  

where f,.(~ - /~) depends only on p, q, k, while gj(~ -/~) depends only on 
p, q', k. These connections are discussed in ref. 19. 
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Korepin and Tarasov (:8) noticed that the L-operator (4.1) can be 
decomposed into a product of two more elementary L-operators of a 
massless lattice sine-Gordon model found in ref. [-24]. Let X~, Z~ and 
X2, Z2 be the two sets of matrices (2.13) acting in different N-dimensional 
spaces. Then 

( aX1 bZ 1 "~( glX2 bZ 2 "~ 
t"~-~cg11 dXl l /~Z21 dX21J 

if we set XIX2Zf~Z~ = 1 and identify zliz21Z2, Z21X2, X I X  2 with A, B, C 
in (2.12), respectively. 

5. F U N C T I O N A L  R E L A T I O N S  

We wish to find the eigenvalues of the matrix T defined by (2.20). Just 
as in ref. 25, let us first search for vectors whose elements are products of 
single spin functions, 

2 M ( 5 . 1 )  Q~} = ~b~l~b~2 �9 �9 �9 ~ 

which obeys the relations 

TQ = ~ I Q ' +  ~2Q" (5.2) 

where ~bl, 1~2 are scalars and Q', Q" are vectors of the same from as (5.1). 
The calculations are closely parallel to those of ref. 25. Rewrite T as 

T~ = Tr[L(c~l, fl~ )L(~2, f12)"" L(eM, tiM)] (5.3) 

where L(a, fl) is a two by two matrix 

L(~, fl) = \ g ~  F ~  

whose elements are given by (4.1), (2.12). The product TQ is a vector 
which can be written as 

(TQ)~ = Tr[K~(e~) K2(c@... KM(c~)]  (5.4) 

Kj(~) = ~  L(c~, fl)~b~ 

Note that (5.4) is unaffected if we replace each Kj(~) by 

Kj~(0~) = O j 1 K j ( ~ ) O j +  1 (5.5) 
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for J =  1 ..... M, provided 

Choose  O j  of the form 

O M +  1 = O  M (5.6) 

1 O j  = - -  (5.7) 
m j  x j  

2 1/2 where m j =  (1 + x s )  . The trace in (5.4) will simplify to the sum of two 
products  if we can choose the ~b J and O j  so that  all K * ( a )  are upper  
t r iangular  matrices,  i.e., their b o t t o m  left e lements  vanish. This is so if 

( x j x j +  1G + x j D  -- x j+ 1 F -  H)O J = 0 (5.8) 

where D, F, G, and H are defined by (4.1). 
Equat ing  the de te rminant  of the coefficients of this linear system to 

zero, we get 

u N det F - d e t  H = 0  (5.9) xjNxj+N 1 det G + xs  det D - x j + l  

for J =  1 ..... M. Given xs  (5.9) is an Nth-degree  equat ion for xj+~. Thus, 
if we take xl  as given, we can construct  the entire sequence x~ ..... XM+~, 
having a choice of  N alternatives at each stage. To  satisfy (5.6), we require 
that  Xl = XM+I. C o m p a r i n g  (5.9) with (4.10), one can readily find solutions 
for which xjN= 1, for J =  1,..., M. In fact they are the only solutions 
satisfying (5.6). Hence, we have the N M solutions of (5.9) 

x j  = co ~J, as = 0 ..... N -  1, J =  1,..., M (5.10) 

where co =exp(Zn/U),  for all U M choices of {~} = {al ..... c~j}. If we use the 
pa ramet r i za t ion  (4.11), then T, Q, ~b become functions of the rapidities 
p, q, q'. When  necessary we shall write this dependence explicitly. Solving 
now (5.8) for ~U, we obta in  

OJJB,(p;q,q ' ) -=CiWpq,(O~j- f l j  ) ~ Z p q ( f l j - a j + l )  (5.11) 

where Wpq and Wpq are given by (3.3), and C~ is a normal iza t ion  factor. 
Then  the vector  Q, (5.1), cor responding to the sequence {a} in (5.1) has 
the form 

M 

Q I ~ I ( P ; q , q ' ) = C Y  1-I [ W p q , ( a j - f l j )  f f ' pq ( ]~s -a j+~) ]  (5.12) 
J--1 

Obviously,  one can view n ~  -e {~} as the matr ix  elements of  some N M by N M 
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matrix Q, which is nothing but the transfer matrix (3.6a) of the chiral Potts 
model for the inhomogeneous chain with alternating rapidities q and q'. 

We can now calculate the diagonal elements of K*, (5.5), using (5.11) 
and the relations 

(K*)oo- me (D+xj+~G)fb: 
m3+ l 

(K.)ll m j+l ( F _ x j G ) ~ j  
m j  

(5.13) 

Substituting the resulting expression into (5.4) and introducing an index R 
for Q to emphasize that Q is multiplied by T from the right, we get [for 
the normalization Wp~(O)-- Wpq(O)= 1] 

T(p; q, q") QR(P; q, q') = ~I(P; q, q') QR( Rn-  lp; q, q,) 

+ ~2(P; q, q') QR(R1-NP; q, q') (5.14) 

where R denotes one of the automorphisms of the curve (3.6), (7) 

(5.15) 

and 

p-~ Rp 

(ap, bp, cp, dp)--, (b~, coap, d~, c;) 

~l(p;q,q')=Cb(p;q,q')I~~176 (5.16) 
yq, fOp -- Xp 

~(yp--O)P+lXq')( tq--O)tp)]  M 
q52(p; q, q') = qS(p; q, q') [_ ~--Fy~_ YZ (5.17) 

q~(p; q, q ' )= [p,cpdpdqdq, I7~pq(p) Wpq,(--p)]  M (5.18) 

where p = ( N -  1)/2, Xp = ap/dp, yp = bp/cp, tp = apbp/cpdp. Next, one can 
find a matrix QL with similar properties. Repeating the calculations and 
using the fact that 

(5.19) 

we obtain 

T(RNp; q, q') = T(p; q, q') 

where 

QL(P; q, q') T(p; q, q') = 4~(p; q', q) QL(R ~- lp; q, q,) 

+ ~2(P; q', q) QL(R~-NP; q, q') (5.20) 

QL(P; q, q') = QR(P; q', q)l 6- '  (5.21) 
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with P given by (3.8). Combining (5.14), (5.20), and (5.21), we have 

T(p; q, q') Qe(P;  q, q') = QR(P; q, q') T(p; q', q) (5.22) 

Setting now q = q', we have 

QL(p; q, q ) =  Upqq, QR(P; q, q ) =  ~fpqq (5.23) 

IT(p; q, q), Q(p;  q, q)] = 0 (5.24) 

where Q = QL or Q = QR, while U, 0 are defined by (3.6). Moreover, the 
YBE (2.3) and the star-triangle equation (3.1) imply 

[-T(p; q, q'), T(p';  q, q')] = 0 (5.25) 

I-Q(p; q, q) Q(p ' ;  q, q)] = 0 (5.26) 

Upon uniformizing the curve (3.5), the weights (3.2) and (4.10), and 
hence the matrices T, Q (for the finite length of the chain N) become 
meromorphic functions of p. Due to commutativity (5.24)-(5.26), T and Q 
have common eigenvectors which are independent of p. Therefore the 
eigenvalues will be also meromorphic functions of p. Their poles are, of 
cause, those of the weights. 

Consider an action of (5.14) on some eigenvector. Let p* be any (non- 
trivial) zero of the corresponding eigenvalue Q(p; q, q); then, from (5.14) 
we have 

Q(RN-lp *) ~ 2 ( P * )  

Q ( R ' - N p  *) q~l(p*) 
(5.27) 

which, in principle, fixes of all the zeros of Q and hence contains sufficient 
data to reconstruct Q. The corresponding eigenvalue of T can then be 
calculated from (5.14). 

The main problem now is to find the suitable uniformization of the 
curve (3.5). Some progress in this direction was made in ref. 26. 

In fact, one can derive additional relations among T(p, q, q'), Up.e,q,, 
and Lfp, q.q,. Here we only state the result, emphasizing the most important 
points of the calculations. The detailed proof given in ref. 19. 

The first relation is 

( t~2)~r ' = A - 1  E (~ RN+lP , ~ ,,,, q, q ))ij ppq, ~7' ~'~,," q, q') (5.28) 
"~y'6 

where S ~ is given by (4.13), (L~Z)e(p, q, q'))ij denotes the matrix elements =B 
of the L-operator (4.1), (2.12), i , j=O,  1, 
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1 n 1 
]o(n)= E cOP(n 1--2j)(~--~), n = 1,..., N (5.29) 
~ '  N j = 0 

p ( N / =  6 ~  (5.30) 

[- - -  S q , , R p ( X  q, - -  ( D y p )  W q ,  RN+ l p ( p )  W q ,  RN+ l p ( p ) ~  M 
A p q q ,  1 i5 

the variables Xp, yp,, tp being defined after Eq. (5.18), and 

( t ;  -- t q)(Xp -- Xq)(yp -- yq)  (5.32) 
Sp.q = N (tp - tq)(X N - x N ) ( y  N -- X N) 

Now consider the fusion procedure  for the matr ix T, (5.3). For  our  
case this procedure  is essentially the same as for the 6v model, (27) because 
it is determined by the degeneracy point  structure of the 6-vertex R-matr ix 
(2.1). We introduce the notat ions 

"L'(2) = T ( R ~ p ,  q, q')  (5.33) 

~ = S R ~  b',q (5.34) 

/~ = ~b2(p, q, q') ~l(RZp, q, q') (5.35) 

and q02 are defined by Eqs. (5.16) and (5.17), and A = N +  1. where ~ 1  

Note  that ]2k(CpdpdqCq, ) 2M is a polynomial  in tp. 
The fusion procedure  leads to the following relations: 

~(k),(2~ , k = 2 ..... N -  1 (5.36) o ~k-1 = ~ k - 2 ~ - 1  +~(o ~+1) 

where z(k 1)= 1 and 

~k ,~ .... ~ - T  [ ~ ( p , q , q ' ) "  ~ ,  v , q , q ' ) ]  (5.37) 

where L (")B' are n by n matrices with the elements (:) 1 1 

( L  (~+ ~)~( n . .  , ~,0,-' q' q'))~b = ~ b~,i,+i2+ +io 6b,j~+j2+ ... +,~ 
il ,..,, in = 0 
Jl ,...,Jn = 0 

N I  (I  
x E (L(2)/mPm(R (m- ~)~p, q, q ' ) )  (5.38) 

\ imam \ -  
~2,...,~n_ 1 = 0 m = l  

where a, b = 0,..., n, and (]) is the binomial coefficient. 
Substituting now Eq. (5.28) into (5.38), we obtain 

0 1 

1 
P~, ,S , ,~ (p ,  R (" ~p, q, q') (5.39) = ~  ~ cop~-l~(6-~)+b~-~'~ ' (m ~ ~)~+ 

7, y ' ,6  
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Setting now n = N, using (5.30), and remembering the definition (4.13) 
and (4.6), we get 

Up, q,q, OR~p,q,q, = Am (bm z] N) 
m = 0  1 

(5.40) 

N o w  recall that  in our  notat ions QR(P,  q, q') coincides with Up, q,q,. 
So, using Eq. (5.14) and the recurrence relations (5.36), one can express 
12 (N) th rough U. Substituting the resulting expression into (5.40), we obtain 
a closed relation which contains only U and U. In the case N = 3, q = q', 
it coincides with the relation presented in ref. 15. 
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